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Abstract

Least squares methods _ on first-order s_.tem._ have been recently

proposed end analyzed for .-_'_ud-order elliptic equations and systems. They

produce symmetric s_nd positive definite discrete system_ by using standard

finite element spaces, which are not required to satisfy the inf-sup condition.

In this paper, se_erd domain decomposition algorithms for these tint-order

least squares methods &re studied. Some representative overlapping and

sohstructuring al_rit.hms are considered in their additive and multiplicati_e

variants. The theoretical and numerical results obtained show that the clas-

sical convergence bounds (on the iteration operaxcr) for standard G_erkin

discretizatious ea'e also _id for iea.,_t squares methods.
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1 Introduction

Least squares methods hsve been proposed in recent years for second-order el-

liptic probl-xas. Stokes and ,_sxicr-Stokes equations: see Chang {10], Bochev

and Gunzbm'ger {2]. Pehllx_aov, Carey, and Lazarov !15_, Cai, Lazatrov. Man-

ieuJq'el, and McCom_ick _5]. C4fi, Manteulfe], and Mccormick i7]. Bramble,

Lazarov, and Pasciak J3], Brarable and Pasciak [4i. Carey. Peklivanov. and

Vassile_ki [8], Cai, Manteuffel, and McCormick [6}, Bother. Cai, Manteuffel,

and McCormick ill, and the references therein.

Among the possible approaches, we follow here the one introduced in the

x_- t_mt works of Pehli_'anov, Carey, and Lazexov [15! and C_. Manteuf-

fel. and McCormick [7]. The second-order elliptic problem i,, rcwritten as a

tint-order s x_stem and a least squares functional is introduced. The re_u|t-

ing discrete minimization problem is a.,_.,ociated with a bilinear form which is

continuous and elliptic on an appropriate space. Therefore, the inf-sup condi-

tion is avoided and standard finite element spaces can be used. The resulting

linear s_tem is symmetric, poeitive definite and has condition number of the

same order as sumdard Galerkin finite element stith_em matrices. O(1/hJ_.

An interesting alternative approach by Bramble, La,_rov, and Pa_iak !3 i is

based on replacing one of the £2-terms in the least squares functional _- a
discrete H-_-norm. We will not consider here such an alternative.

The goal of this :,_eper is to extend to th_e least squares methods some of

the classical domain decomposition algorithms which have been succesduUy

empl_'ed for standard Galerkin finite elements. We show that optimal and

quasi-optimal con_'ergence bounds fodow easily from the standard Galerkin

case. Therefore, domain decomposition provides highly parallel and scalable

.m|x'ers also for first-order system leatst squaw discretizations. An overview of

domain decomposition methods can be found in the revhew papers by Chan

and Matthew [9], Dryja. Smith. and Widlund il 1], Dryja and Widlund [13],

aT_d Le Tallec [14].

This papc_r is organized as follows. In the next section, we briefly review

the first-order system least squares methodology and the main results from

[7!. In Section 3, i_-e introduce and analyze our domain decompmition algo-

rithms: overlapping additive Schwarz methods (with coupled and uncoupled

mbspaces: see 3. l ). overlapping multiplicative Schwarz methods (3.21. and

an iteratix_e subetr,lcturing method (3.3). In Section 4. _'e present numerical

results in the plane that confirm the theoretical bounds obtained.



2 First-Order System Least Squares

We co_sider the following second-order elliptic problem oll a bounded domain
flcR2orR 3

{ -_'.(AVp)-Xp = f in fL
p ffi 0 onFv,

n. AVp = 0 onFN.
(t)

Here A is a symmetric and uniformly pcitive definite matrix with entries in

L'°(f}), X _s a first-order linear differential operator, FD U I'.,,- = o_,.. and n
is the outward normal unit vector to l'x.

Defining the new flux variable u -- -AVp, the system ( ! ) can be rewritten
as a first-order system:

u-AV'p = i

_-u-+ Xp

P
n.u 0

in fL
i_ .q.

on to,
on F.v.

]'his system can be extended to the

u+A_'p =

V-u+ Xp =
_ × A-lu =

p ffi
II.U =

_,(A-lul =

equivalent system

0 in .Q,

f in ft.
0 in .Q.

0 on I'o,

0 on l'v,

0 on Fo,

(3)

where V'x is the curl operator (in two dimensions V "<u = 0 means _,,- _'_---_=
0) and _,u = u × n (in two dimensions "_,u = u- r).

The follo_,'iug least squares fumctionals. Go for the s3_tem (2) and G for
the augmented system (3l. were studied in [5] ([1.5] for the case .X"= 0) and

17], resp_t ix,ely:

". . . _2 2C,0(v. q: f) = tv + ,-tVq 'z_qn)+ (V. v -- Xq -.fllv w._

V(V.q) (2 W0(dic:f_) × _" and



¥(v, q) E W × l'.

Here the functional spaces are d_ned as

Wo(dit,:fl) -- {v ¢ H(dit';fl) : .,, .v ffi 0 on l',v},

W0(curL4: .Q) - {v E H[curlA: fl) : _,(A-tv) = 0 on ['v}.

W = Wo(dit,; fl) N We(cur/A; f_),

V = |q_ HX(ft):q = 0on l'v}.

The least squares raiaimizatioa problems for (2) and (3) are. respectively:

Find (u.p) E V*'o(dit,; fl) × 1" such that

Go(U,I,;f) "" inf Go(V. q; f): (6)
i v _)_Wdd,_-.n) x v

Find (u. p) E W x _" such that

G(u,p, f) = iuf G_v,q: f). (7)
(v._|EWxt"

Simple calculations show that the associated _'ariational problems are,
respectively:

Find (u,p) E Wo(dir;f}) × I"such that

ao(u,/,:v.q) = Y(v.q) V(v.q) E V_'o(dic;.q) x I'; (S)

Find (u,p) E W x V such that

a{u.p:v.q) ffi f(v.q! V(v.q) E W x i" (9)

Here t he bilinear forms axe

_(u,_,: v.q) = {u - AVp, v + .4Vq)L_ + (V. u + Xp.V. v + A'q)L:,

oiu.p:_.q) = oo(u,p;v,_) - (V x (A-tu).V × (A-%I)L,

and the right-hand side is

F(v.q) =. 'I, V "v + A'q)z,.

in [5], it was pmve_! that ao(v.q:v.q)is equivalent to (continuous and
elliptic with respect to1 the H(d_r: .q_× H t (_}) norm on Wo{dil.; 1"t)x l.'. uzlder



[ I

the assumption that a Poincar_-Friedrichs inequality holds for p (denoted by
assumption A0). For the case X = 0. this was already proved in [15].

In [7], it was proved that a(v,q:v,q) is equivalent to the Dll(di,,;f_) "

H(curl.4:fl)! × Hl(fl) norm on W × V. under the same assumption A0.
M(xeover. under three additional technical assumptions denoted by AI, A2.
AS, it. i._ proven in [7] that a(v,q:v.q)is equivalent to the Hl(fl) d÷= norm

on W × V (d= 2or 3_:

Theorem 1 Let b(u,p:v,q) = (u.v)H_q_)_, + (P,q)w(_) be the bilinear form

L*.,c_ci,ted mtla the H_(fl) d÷! norm.

If the oastmlption, .40-.4,* of [7: are re,lied then there ezist _s#ive
constants a and 5 such that

ob(v.q;v,q)<a(v.q:v,q) V(v.q) _ W _ t",

Gnd

a(u. p; v. q) < "db(u,p;u, p)2 ;_b(v, q: v, q),/2

V(u.p),(v,0) E W x I".

Bccau_ of the equivalence of a I-.. _and b(.,._, from now on xve will concen-

tr&te on the variational probleln (9) associated with the augmented system

We introduce a triangulation ."_of !! and associated _inite element sub-

spaces W _ x I 'A C W x V. We then obtain a finite element di,-.cretization

of _9):

Find (u._,p_) (2 W h x I 's' such that

a(u_.p_:v_,q_} = f(v_,q_', V(v_,q_) E W: × I" _I0)

For simplicity, we consider continuous piece;vise linear finite elements:

|'a = {q E C°(ft) : q):,- E PaIK). V/x"e :_..q E t.}.

and the subscript h for discrete functio_xs will be dropped in the rest of the

paper.
Error estimates and r_ults on the conditioniu 8 of the resulting stiffness

matrix can be formal in i5] (in [15] for the case X = 0).
Upon choosing a basis in W s and _., the discrete problem (10) is turned

into a linear system of equations Aa" = b. We are going to solve such system

iteratively using domain decompoeition t_hniques.



3 Domain Decomposition Algorithms

_,_ will introduce and an_"_ our domain decomposition algorithms in the

Schwarz frarnexwxrk, which has been wry successful for standard Galerkin

finite elements, see [9]: [11]. [12], !13]. We illustrate the main ideas ¢m algo-

rithms that are repre_q_tatix_ of the main classes of domain decomposition

(additi_, multiplication, overlapping, it_ative s_tetructuring). The same

tnalyds can be applied to the many other _gorithms which haw been pro-

posed trod anal_ for the standard scalar case.

We suppose that the domain fl is firs;, triangulated by a cosrse finite

element triangulation rH consisting of N subdomains f/, of diameter H. The

fine triangulation _'_ is a refinement of ¢H. For simplicity, we suppose that

each subdomnin is the image under a smooth rasp of a reference cube.

3.1 Overlapping Additive Schwarz Methods

Each subdomaln fl, is extended to a larger subdomain W,. consisting of all

elements of _ within a distance _ from f_i (0 < _ < H).

F.ach scalar component of our finite element space W h × V _ is decomposed

as in the standard scalar case:

N A"

w,'= w:=E w,',,
i"l t_!

where

":=E
t--I e=l

_;_,= (._ tt? :,_ppor*_.)c _',}. _= !."..3.

t__ : {u 6 t '_" : support(u) C f_',}.

For each scalar component, a global coarse finite element space is L_u_ciated

with the coarse _riangulation :'u:

tl'_ o = tl'ks = {u _ t4"_': u is trilinear on each subdomain f},}, k = 1.2,3,

to _ = I 'u = {p E t 'h : p is trilinear on each subdomain f_, }.

A first additive method is defined hv the following decomposition of the

discrete space, which maintains the local and coarse coupling between the

5



different scalarcomponents:

,Y

w' _ v' = _:w,'. I;'.
imO

The local spaces are

w,_×_.;'= .,_ ×u'_.,×u'_,__',' _= _.z.....v

and the coarse space is

We define the local projection operators Pi : W _ x V _ -- W, _ x I.__ b_

a(P,(u.v):v,q) = o(u.p:v,q) V(v,q) E W_ x t-_h,

and the coarse projection operator Po : W _ x V _ -. W0 _ x Io* by

a(Poiu.p), v,q) = a(u.p: " ',_,q, v(v,¢) _ w_ × to_.

It is easy to see that the matrix form of the local projections is P, =

{ 1 if e. Efl:}R_,4,1R_A. where the B, le_) = 0 otherwise . are the rt_tricl.ion ma-

trices selecting only the unknowns in [!', for each ¢omponen_ and the A, =

R,4_. r are the stiffness matrices of local Dirichlet problems. Analogously.

Po = R_A_IRHA. where R_ is the standard piecewi_ line_ interpolation

matrix from the coarse grid :'H to the free grid :h. for each component, and

AH = RR.,IB_ is the coarse grid discretization of our probl,_n (.q). Let

The ori$inal discrete problem is t hen equivalent to t hq. preconditioned prob-

lem

where g = ,_,V.oP.(u.p) : see Chan and Mathew [9]. In matrix form. this

problem can be written as M-tAx = M-tb. where the precol_dilioner is

t;



M-t -- Ei_a RyA._R_ + R_.4HtRH • An optimal convergence bound for this

algorithm is given in Theorem 2.

.-_ second additive method is obtained by dropping the coupling between

the different scalar components of u and p. Uncoupled local spacx-s are now

defined by
w _ _;:, _ (o) × {0}×{0},|,i "--

v; = {0}× {0}× {0}_ x;'.
and the coarse spaces by

w," = w _ =U;_o_ 1o}× {o)_ {o},1,0

W_ -- W h tt "_

wf = W_o--{0)_ 10}× *t_o_ {0).
v s - v_'= {o)× (o) × (o) × t_'.

We then have the following decomp_ition

N ,V ._ .V

w' _v' = E w_.,+X w_'.+X w',.,÷E v: +wf +w_+wf, v_
,*! *al v,q i=i

3 .*_" .V

=ZZw' ,.,+Ev, _.
k=! l :_"0 ileO

As before, we define projectiom P_, : W A × l '_ _ W_.,, t - 1,2,3, i =

O, 1,-.-.N and P4., : W _ x t .'h _ V_, n -- O, 1,...,N, tnd the additive

operator
$ A' N

Po_--EEP,, +Ep,,.
+k=l taO osO

We note that this algorithm can equivalently be defined by the same choke

of subspaces as for Po_,t but using the bilinear fom_ b(..-) (introduced it:

Tbeorem 1 ) instead of a(...) in the definition of the projections, in fact this

uncoupled preconditioner corresponds to applying fotlr identical copies of a

scalar precoeditioaer to each scalar component. An optimal boand also holds

for this algorithm.



Theorem 2 Tho'¢ ezists a positiw. ¢o_.qtent C independent of h,. H and

s_ch that

c_md(P) < C(l + _-),

where P = P,em or P = P,_ .

Proof. An upper bound on the spectrum of P is standard, since each point of

fl belongs to a fixed number of extended subdomains independent of :%:(t'or

example, for t_ <///2 each point belongs to at moet four (in 2D) or eight tin

3D) extended subdomains), A lower bound is obtained _" classical _hwuz

analysis.

For P = P_, since _ use exact projections, the theorem is equix_ent

to the following partitive property lsee Dr::'ja and Widlund [13] or Chart and

Mathew [9]k

There e.,dsts a constant Co such that V(u. p) E W h × I '_. there e.'dsts a

decomposition (u,p) ffi _x" ,E,fo'.ui,F), with (u,,p,) E W_ x I_a such that

N

<_ v:u.p).

By the equis'_dence of l-heorem 1, this inequality is equivalem to

N

_<

which is a direct consequence of the _alar result proven by Dryja and Wid-

hnd [13_:
N .%"

_,_ 2 k2 2 2
Z IU, ,H, < Is: Z: <_ . C. lpl...
i=0 o_'O

with Ce2 = C(l + _ ).

For P = P,_. since the subspaces are the same but we u_ inexact

projections defined by b(-..) instead of a(.,-). _e need only to show that

there exists a constant w such that a(u,p;u,p) <_ ,,_b{u, p: o. p) _'(u,p) E

W_ × I__'. = 0,1.-..,N (see Dryja and Widlund [12]). l'his foUows

immediately 1, _ the eqnivalence of a and b.



3.2 Overlapping Multiplicative Schwarz Methods

By using the same coupled local and coarse spac¢_ as in the additive algorithm

P.d_l, we can define it multiplk&tive operator:

P,,,_, = 1 -(!- _v)...(l- P,)CI- Po).

The multiplicati_ algorithm consists in solving the nonsxTamcqric system

P,,_,iu. p) = g._,,

by an iteratix_ method such as GMRES.

V(e can also define a s x_mmetrized mu!tiplicati_ operator

p.,,,, = i- _l- P,)...(I- P_-__)tl- P._)(1- P^.__)... (I- Po)

and a symmetrized dgoritlml, consisting in solving the _ymmetrk system

P_,,:,,lu.p} ffi g,,.,_,

by an iterati_e method like CG.

Theorem $ There ea_sts a positive constant C independent of h. H snd
such that

cond(P_,.au_ < ('_1 -'- _H_

]'he proof is again based on the extension of the u'alar _'esult _see, for exam-

ple, Chan and Mathew [9_) _" using the equivalence of Theorem 1. Analo-

gously, multiplicalive versions of P_t_ could be built u_ng uncoupled !o¢_1

and t_arse spaces.

3.3 An Iterative Substructuring Method

For a complete and detailed analysis of this clas_ of methods, we refer to

Dryja, Smith and Widlund Ill]. Hen' we consider only a s_mp|e represen-

tati_e of this class, namely the analog of Aigoritlun 6.2 in [11], which is

verte::-ba._.d and has a standard coarse space. For simplicity, we only con-

sider the uncoupled additive version.



The standard first step of noooverlapping methods is the elimination of

the variables interior to each subdomain (at least implicitly). We then work
with the Schur complement S = KslP - KTsK_tKt_ of the stiffness matrix

Kll Km)K= Kra Kss "

The reduced linear s.s_tem with S invols_s only sariables on the interface
F = t._qfl, \ Fo. When solving with a preconditioned iterative method, we

need only the action of S on a given ,,x,ctor and there is no need to a._,ernble

S explicitly.

la the Schwarz framework, working with S corresponds to working with
the discrete harmonic suhspace _r_ x I_"_ of the original space W _ x 1."A.

Local spaces are as.q_ciated with the geometric objects (faces F,. edges E,

and vertices r,) fen'ruing the interface r. Each _ar spac_ is decomposed as

F, £', ,.,

and

F, f. _,

Here.forexample,;_A,;= {u E I|"h:u -0 on l'h-F,..,.),where F_ and F,t,

arethesetof nodes on I"and/',respectively.'I'heotherspacesare defined

analogously.As fortheoverlappingcase.we thenembed thesescalarspaces

in our product space _r_x f'_: for example, V¢_, = d.']_, × {0} x {0} × {0}.

As a coarse space, we consider the discrete harmonic subspace of the same

coarsespace used forP._,_.i.e.,W_ + Wf. Wf + _:". We obtain the

followingdecomposition

3

t=l F, £, t,

+E*_.*E _;'_.*E';'_.+*'.
F, tr, r,

By denning as before projection operators into the $ubspaces. we form the
additi_ operator

4

_.,-"E!E _',.,.+E P,_.+E I",,.+_',0).

10



III

where again for k = 4 the projections are into the V_ spaces.

Theorem 4

that
There crisis, positir¢ constant C independent o.f h ,rod H sech

cm1(P ,) < C(t ÷ loS(H/h)f.

As before, the proof is ba._.d on the extension of the scalar r_ult {see Dryja.

Smith and Widhnd "_11_.Theorem 6.2) b v using the equivalence of Theorem

1.

4 Numerical Results

In this section, we _,-port the results of numerical experiments which confirm

the optimal convergence bounds obtained in the previous sectkms. All the

results have beea obtained with Matlab. 4.2 running on Sun Sparcstations.

"[he model problem considered is the standard Poisson equation I.A - I, X =

O) oz_ the unit _uare, with p - 0 on r_ --- Ofl and _.-u -- 0 on Of/(i.e. u_ = 0

on {g =0} and {_ = 1}; u2 =0on {a- =0} and {z-- 1)). The right-hand

side f is chosen such that we haw p_z, y) = sin{=x).*/n(rg) as exact solution.

.q is decomposed into a regular grid of N square subdomains, with N varying

from 2 x 2 to 8 x 8. The fine grid mesh size h varies from 1/32 to 1/128.

The Krylov method u.q,d for all the symmetric problems is PCG, while

we use GMRES for the nonsymmetric problem with P,,,,.,t. The initial guess

is always zero and the stoppin_ criterion is Ilr_i 2/llr011_ < 10-s. where r_ is

the residual at step t.

The locaJ and coarse problems inx_|xx, d in the application of the precon-

ditioners are always solx_d directly. For each method. _e report the number

of iterations and Lancaos-based estimates of the condition number and the

extreme eigenvalues (except for the multiplicatixe algorithm, where we report

the average comvergence factor instead).

Ot_rlappin_l additwe methods. We have tint studied the coupled method

Poa_a with fixed minimal ove='lap size ? =ffih. The mesh size h is decreased

while the number of subdomains N is increa._,d proportionally, so that the

subdomain size H/h = 16 is kept constant (H ffi I/v'_). The results are re-

ported in Table I and clearly show a constant condition number cond( P,/,-j ) ffi

_,,,,./.L,,,.. for problem rites from 3007{N = 4) to 48895(N ffi 64),

II



Table1: Po_l: OverlappingAdditive S_hwarz with fixt_ overlap size _ -- h.

N h -1

4 32

9 48

16 64

25

36 96

49 112

64 128

itcr. cond(P,d_ ) L,., _,.,

16 11.2172 4.0048 0.357[)

19 12.1787 4.0068 0.$290

20 11.9775 4.00.50 0.3343

-'20 11.1_. 4.00.52 0.3586

21 12.3450 4.0044 0.319"2

20 ! 1.9944 4.00.50 0.3.1.19

2l 12.5,50t, t.00t7 0.3191

'Fable 2: P._: Overlapping Additive Schwarz with fixed number of subdo-
mains A' = 64

" $. h -I ] ifer. cond(Pt_q) g,_,z ._,,,,,

h 128[ 21 12.5,'300 4.0047 0.3191
_ 128 [ 17 7.1316 4.0307 0.56..51

3h 128! 16 5.5769 4.0765 0.7.109
r

_h 128 m 15 4.9510 4.1396 0.M.56

5h I_ [ 15 4.6460 4.2170 O..qO_'6i
16b. 12$ , 15 4.5125 1.30,M 0.9,$tl

7h 128 I 16 4.5859 4.4018 0.%._

12



Table3: P._a_: Overlapping Additive Schwarz with fixed overlap size ¢_-- h.

._" h-t

4 32

;9 45

t
',25

I

1'9

it_r.
i

17

64 20

SO 21

96 21

112 20

128 21

¢.ond(P.,_) ),_.,. A,,,,.

10.3,521 4.0050 0.3.q68

!2.6..290 4.0051 0.3171

1 !.981 ] 4.0051 0.:_42

11.3821 4.0052 0.3515

12,5458 4,0043 0.3191

11.9997 4.0052 0,3337

12.5261 4.0017 0.3197

Table 4: Pol,t

mains N = 64

: Overlapping Addith'e Schwarz with fixed number of subcb-

h 12S

.,°h 128

Sh 128

4h 128

5h 125

6h 128

7/1 128

21 12.5261 4.0017 0.3197

17 7.1206 1.0315 0.5661

16 5.5313 4.0777 0.7,M5

16 5.3_',J(} 4.1412 0.7695

16 5.4M5 4.2233 0.7742

16 5.5306 4.31._ 0.7503

16 5.6176 4.4_7 0.78_3

i3



Table 5: P.,u and P.._,: Overlapping Muhiplicati,a-Schwar'z with fixed

overlap size/i = h.

9

16

25

36

: 49

64

N h "1

4 32

48

64 6

8O 6

96 6

!i2 6

128 5

mul_pScatixx- (GMRES} [ s.vmmetrized multiplicative (CG)

i/er. P = (rl/ro)Ui _;5) .Laax ._,._,_.

T _ I 7 1.8576 _ 0..5379
7 0.1433 '6 1.7398 0.9999 0.5749

0.1233 t 6 1.7600 0.9999 0.5681

0.1102 i 6 1.6810 0.9999 0.59-18

0.1021 I 6 1.6940 0.9999 0.Sg4Y2

00952 6 1.6661 0.,_199 0.6001

0.0849 6 1.7308 0.9999 0.6079

In Table 2, we fix the mesh size (h = 1/126) a_d the decomposition

{N = 64) and we vary the overlap size 6 from h to 7h. As in the scalar case.

the condition number cm_d( P,_..q ) improves as 6 increases, bet'au_ of _,,,,-.

being closer to unity. For large o_rlap, tiJe improvement, becomes negligible

or negative, because of the _rowth of _.

The same sets of results for the uncoupled method P,,m are reported

in ]'able 3 and 1"able 4, respectively. For this simple mode_ problem, the

uncoupled method is only slightly worse, than the coupled one. in terms of

iteration count (some condition numbers ate almost the ._xme or even better

for P,_). We point out that although A = I, eliminating diffusive coupling

bet_x, en the flux components, there is still coupling between the flux variables

and p. so the strong performance of P,_ is encouraging.

Ove'doppin9 maltiplicatn, e methods. In 'fable 5. we compare the muhi-

plicative method P,_t_ accelerated with GMRES and the symmesrized mul-

tiplicative method P_,_:_ accelerated with CG. We consider the two methods

with minimal overlap and constan! subdomain size. Since P._.a_ is nonsym-

metric, we rei>crt the average convergence f_ctor p = _ ,/-o _, instead of the

condition number. Even if the symmetrized version is approximately twice

as expensi ve as the standard one. the number of iterat ions is al mc,q the .same

for the two methods. Titerefore. the s.vmmetrized version is less efficient on

this simple problem.

14



Table 6:

N h -1

4 32

9 4S

16 64

25 8O

36 96

49 112

61 128

Pi_: Iteratix_ Subst ructuring.
iter. cond(P,,) .k,,°_ )h,,,_

9 3.4035 1.5691 0.4610

17 7._12 1._97 0.2347

18 7.8543 1.7_2 0.2287

18 8.58.0"2 1.8864 0.2198

19 9.4115 1.8511 0.1966

18 8.6646 1.8939 0.2185

19 9.6-532 1.$617 0.1928

Iten_tire s_bstracturing. Table 6 shows the results for the iteratix_ sub-

structuri_ methods P,, with fixed subdomaia .size. The)" clearly show a
constant bound for the condition number and the number of iterations.

5 Conclusions

In this paper, some do[nain decomposition algorithms have been introduced

for the discrete systems arising from first-order system least squares methods

appli_l to second-order elliptic problems. These r_ently pro_ methods

allow the u.,e of standard fafite element spaces, which are not required to

satin" the inl-sup condition.

The analysis of the domain deccsnposition algorithms follows from analo-

go,Is r_sults for the standard Galerkin ca_ and the equivalence between the

bilinear form a.ssoci0.t_! with the least squares functional and the Hx(fl) _÷1

norm.

Optimal convergence bounds have been proven for ova.flapping algorithms

(addilive. multiplicative, coupled, uncoupled versions ;. while quasi-optimal

bounds have been proven for iterative substructuring algorithms, l_umerical

experiments on a simple nmdel problem confirm these bounds.

Future work will investigate the performance of these algorithms for prob-

lems with comx, ction and for elliptic _'stems.
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